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Abstract: A state observer is proposed for asynchronous machine; with this observer it possible to observe rotor
flux rotating speed and load torque. The gain of this observer involves a design function that has to satisfy some
mild conditions which are given. Different expressions of such a function are proposed. Of particular interest, it
is shown that high gain observers and sliding mode observers can be derived by considering particular expressions
of the design function.
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1 Introduction
The removal of the mechanical speed sensors offers
an economic interest and may improve the reliability
in the field of low power applications.

This article has as a principal objective to study
the technique of determination mechanical speed and
rotor flu of the asynchronous machine without veloc-
ity sensor.

The robustness, the low cost, the performances
and the maintainability make the advantage of the
asynchronous machine in many industrial applications
or general public. Joint progress of the power elec-
tronics and numerical electronics makes it possible
today to approach the controlling of axis at variable
speed in applications low powers. Jointly with these
technological projections, the scientifi community
developed various approaches of order to control in
real time the flu and the speed of the electric ma-
chines.

That it is the vectorial control, the scalar control
or DTC control , to control the speed of the load it is
necessary to measure this one by means of a mechan-
ical sensor. For economic reasons and/or of safety of
operation, certain applications force to be freed some.
The information speed must then be rebuilt starting
from the electric quantities. Multiple studies were un-
dertaken, and without claim of exhaustiveness, we can
distinguish several approaches (see [1], [2] and [3]).

The control speed sensorless must however have
performances which do not deviate too much from

those that we would have had with a mechanical sen-
sor. It is thus significant during the development of
an approach of velocity measurement without sensor
to lay the stress on the static precise details and dy-
namics of this one according to the point of operation
of the machine.

The article is organized in four sections:

1. Dynamic model of asynchronous machine;

2. Problem formulation;

3. Observers design;

4. Results and simulations.

5. Conclusion

2 Dynamic model of asynchronous
machine

In this study, the model of the motor rests on the fol-
lowing hypothesis as [4]:

� The flu es and the currents are proportional by
the intermediary of inductances and the mutual.

� The losses iron are neglected .

� The air-gap is constant (squirrel-cage rotor).

� The homopolar components are null.
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It results from these assumptions that the various mu-
tual between rotor and stator can be expressed like
functions sinusoidal of the rotor position.

Its vector state is composed by the stator currents,
rotor flu es and speed, as follows:
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The states variables accessible to measurement
are the stator currents � �

�
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but to

in no case rotor flu � �
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In these equations:

�� : Stator inductance cyclic ,
�� : Rotor inductance cyclic ,
� : Cyclic mutual inductance between stator and rotor
	� : Stator resistance,
	� : Rotor resistance,

 : Scattering coefficient
�� : Time constant of the rotor dynamics,
� : Rotor inertia,
�
 : Resistive torque,
� : Pole pair motor,
�� : is the 2-dimensional identity matrix,
�� : is a skew - symmetric matrix.

We need to transform system (1) to the triangu-
lar form. One will introduce the change of variable
according to:����
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Using this transformation and a time derivative of
these states, we can rewrite from model (1), a follow-
ing model :
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With �� � �
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�
��.

3 Problem Formulation
Consider the nonlinear uniformly observable class of
systems as the following form :
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where the state � � 
��; the input � � 
�� the
set of bounded absolutely continuous functions with
bounded derivatives from 
�� into 
� a compact sub-
set of 
��; 	���� � 
��. Our objective consists in de-
signing state observers for system (4). We pose the
following hypothesis (see. [7]).

�� : There are four positive constants � and � such
as:
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� : The function ����� is uniformly bounded by Æ �
�.

When ����� � �, system (4) is identical to that
considered in [5] and it characterizes a sub-class of
locally 
�-uniformly observable systems. In [6], the
authors considered a sub-class of systems which in-
volve the same uncertain term, 	����, as (4). In the
sequel, one shall use a strategy of observer design for
asynchronous machine similar to that adopted in [5],
[6] and [7].

4 Observers Design
One shall firstl introduce an appropriate state trans-
formation allowing to easily design the proposed ob-
servers. Then, the equations of these observers will be
derived in the new coordinates before being given in
the original ones.

4.1 State Transformation

Consider the following change of states:
� � 
�� ��� 
���

� �

�
� ��
��
��

�
�� ��� � �

�
� ��
��
��

�
�� � ���� �

�
� �����

�����
�����

�
��

where the ����� ,� � �� � are define as follows:
��������
�������

�� � ����� � ��
�� � ����� � ���
�� � �����

� �

�
����

�
�
��
�� � ��

	
�
�
����

��
��

	 � � ���� � ��

(7)
where � block diagonal matrix and ��� is his left

inverse:
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Using this transformation and a time derivative of
these states, we can rewrite from model (1), a follow-
ing model :�����
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Proceeding as in [5, 6], one can show that the
transformation � puts system (1) under the following
form:
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where  ����� has a triangular structure i.e.
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4.2 Observers synthesis

As in the works related to the high gain observers syn-
thesis (see [6, 7, 8, 9]), one pose the hypothesis :

�� : The functions ���� and  ��� �� are globally
LIPSCHITZ with respect to � uniformly in �.

Before giving our candidate observers, one intro-
duces the following notations.

�� Let �� is a block diagonal matrix define by:

�� � ����

�
��� �

!
��� �

!�
��
�
� ! � � is a real number.

�� Let " � "��� is a definit positive solution of the
ALGEBRAIC LYAPUNOV EQUATION:

" ���" � "����� � � (10)

Note that (10) is independent of the system and
the solution can be expressed analytically. For
a straightforward computation, its stationary so-
lution is given by: "����� � �����������

�����

where ��
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�	�����	 for # 
 � and � � �; and
then we can explicitly determinate the correction
gain of (3) as follows:
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, set 	$ � ��$ and let
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be a vector of smooth func-

tions satisfying:
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�% � �� �$ � 
�� � ��$� � % $ (13)

The system
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is an observer for (9); Where �� � �� � � error in es-
timation; ����� satisfie conditions (12) and (13); � is
the input of system (9) and ! � � is a real number.

Finally one gives the following lemma (see[7]):

Lemma 1 Assume that system (9) satisfies hypothesis
�� to ��. Then,

�!
 � �� �! � !
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�� � 
�� ������ � 
�� one has �
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where � is the unknown trajectory of (9) associated
to the input �, �� is any trajectory of system (14)
associated to ��� �� and Æ is the upper bound of
�����. Moreover, one has ������� �'�� � �� and
������� ���� � �.

4.2.1 Analyse Stability

One has:
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Notice that ����� is a lower triangular matrix with
zeros on its main diagonal. Moreover, using hypoth-
esis �� and ��, one can easily deduce that ����� is
bounded.

Now, one can easily check the following identi-
ties: !���� ��� � � and ��� � � . Set 	� � ����.
One obtains :
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To prove convergence, let us consider the follow-
ing equation of LYAPUNOV ( �	�� � 	��"	�. By calcu-
lating the derivative of ( along the �� trajectories, we
obtains:
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By taking account of the (10) and (12) the deriva-
tive of ( becomes:
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Now, assume that ! 
 �, then, because of the
triangular structure and the LIPSCHITZ assumption on
 , one can show that :

�� � ��� ����  ��� ��� � ) 	� (17)

where ) is a constant of LIPSCHITZ. Similarly,
according to hypothesis �� and to the LIPSCHITZ as-
sumption on � (hypothesis ��) , ����� is bounded.
Moreover, and since ����� is lower triangular with ze-
ros on the main diagonal, one has:���!��������

��
�

��� � * for ! 
 � (18)
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where * � � is a constant that does not depend on
!. Finally, according to the structure of 	���� and since
����������

�
is triangular, one can show that:
�������

����������

��
	����

����� � ��

!�
Æ (19)

where Æ � ��� �	����� given in hypothesis �;
� is given in hypothesis ��. Using inequalities (17),
(18), (13) and (19) inequality (16) becomes:
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Now taking !
 � � � ��� ,�� and using the fact
that for ! 
 �, 	� � �� � !� 	�, one can show
that for ! � !
, one has :
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It is easy to see that &� '� and �� needed by
the result 1 are: & � +�"�, '� � ����

� and �� �

�� �����
������

. This completes the proof.

4.3 Observers equations in the original coor-
dinates

Proceeding as in [6], one can show that observer (14)
can be written in the original coordinates � as follows:

��� � ���� ���� !������� "������� � ��� (20)

Some expressions of ��������� � ������ that sat-
isfying conditions (12) and (13) shall be given in this
section and the so-obtained observers are discussed.
These expressions will be given in the new coordi-
nates � in order to easily check conditions (12) and
(13) as well as in the original coordinates � in order
to easily recognize the structure of the resulting ob-
servers.

4.4 High gain observer

Consider the following expression of ���$�:
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One can easily check that expression (21) satisfie
conditions (12) and (13). Replacing ����� by expres-
sion (21) in (20) gives rise to a high gain observer (see
e.g. [9, 5, 6]):
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Referring to (7), the rotor flu is governed by the

following equations:
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4.5 Sliding mode observers

At firs glance, the following vector seems to be a po-
tential candidate for the expression of �����:

�sign���� � ���sign���� � �� sign�����

� �� sign����� � �� 	�sign���� (25)

where sign is the usual signe function with
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Indeed, condition (12) is trivially satisfie by
(25). Similarly, for bounded input bounded output
systems. However, expression (25) cannot be used
due the discontinuity of sign function(see.[10]). In-
deed, such discontinuity makes the stability problem
not well posed since the LYAPUNOV method used
throughout the proof is not valid. In order to over-
come these difficulties one shall use continuous func-
tions which have similar properties that those of the
signfunction. This approach is widely used when im-
plementing sliding mode observers. Indeed, consider
the following function:

4.5.1 Tanh function:

��������� � ��� ! "#���� � �� ! "#�����

� �� ! "#����� � �� 	� ! "#����(28)

where ! "# denotes the hyperbolic tangent function;
then:
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4.5.2 Arctan function:
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Similarly to the hyperbolic tangent function, one can
easily check that the inverse tangent function:
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5 Comparison of sensorless ob-
servers

To examine practical usefulness, the proposed ob-
server has been simulated for a three-phase 1.5kw
asynchronous machine(see [11]), whose parameters
are depicted in Table 1.

Pole pair motor � 2
Frequency � &�-�

Stator inductance cyclic �� ��'�.

Rotor inductance cyclic �� ��'�.

Cyclic mutual inductance � ����(.

Stator resistance 	� &(�(�

Rotor resistance 	� ��

Rotor inertia � �����)/0

Table 1: Asynchronous machine parameters used in
simulations

.

In order to evaluate the observer behaviour in the
realistic situation, the measurements of �� issued from
the model simulation have been corrupted by noise
measurements with a zero mean value. The torque
lead takes the shape of stair.

High gain observer : The adjustment parameter of
the observer (23) is to chosen ! � �&�. The
dynamic behaviour of the error of rotor flu is
depicted in Figure 1 graph (a); when graph (b)
shows the gaussian errors density and empirical
errors histogram of rotor flu error. The means
of error flu equal ������ with very small vari-
ance �)�&& � ���� this is almost surety. The
pace of speed error is given by the figur 2 graph
(a) and the gaussian errors density and empir-
ical errors histogram of rotor speed error are
presented in graph (b)where means of error ro-
tating speed equal ���( � ���� and variance
equal )); the curve of load torque is illus-
trated on figur 3 graph (a).In graph (b) appear
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gaussian errors density and empirical errors his-
togram of load torque error where means of er-
ror load torque equal �&**����� and variance
equal '( � ����
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Figure 1: (a) Flux error. (b) Gaussian and histogram
of error flux
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Figure 2: (a) Speed error. (b) Gaussian and histogram
of error speed.
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Figure 3: (a) Load torque error. (b) Gaussian and his-
togram of error load torque.

Sliding mode observer with ! "# : Estimation
results of the proposed algorithm (30) with
! � &� is reported in Figure 4, 5 and 6. The
behaviour of the error of rotor flu is depicted
in Figure 4 graph (a); when graph (b) shows
the gaussian errors density and empirical errors
histogram of rotor flu error. The means of error
flu equal�������� with very small variance
 � ���� this is almost surety. The pace of
speed error is given by the figur 5 graph (a) and
the gaussian errors density and empirical errors
histogram of rotor speed error are presented in
graph (b)where means of error rotating speed
equal ���(� and variance equal ��*&�); the
curve of load torque is illustrated on figur 6
graph (a).In graph (b) appear gaussian errors
density and empirical errors histogram of load
torque error where means of error load torque
equal ��(&�& and variance equal ���'�

0 0.5 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time(s)

Er
ro

r f
lux

(W
b)

(a)

−0.3 −0.2 −0.1 0 0.1 0.2
0

500

1000

1500

2000

2500

3000

3500

4000
(b)

Gaussian
Histogram

Figure 4: (a) Flux error. (b) Gaussian and histogram
of error flux
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Figure 5: (a) Speed error. (b) Gaussian and histogram
of error speed.
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Figure 6: (a) Load torque error. (b) Gaussian and his-
togram of error load torque.

Sliding mode observer  $%! " : Under the same
conditions with the function ! "#. One sim-
ulates for the function  $%! ". The figur 7,
8 and 9 illustrates the pace of error flux error
speed and error load torque in respectively. The
behaviour of the error of rotor flu is depicted
in Figure 7 graph (a); when graph (b) shows
the gaussian errors density and empirical errors
histogram of rotor flu error. The means of error
flu equal�(������ with very small variance
* � ���� this is almost surety. The pace of
speed error is given by the figur 8 graph (a) and
the gaussian errors density and empirical errors
histogram of rotor speed error are presented in
graph (b)where means of error rotating speed
equal �'(&* and variance equal �*(&�; the
curve of load torque is illustrated on figur 9
graph (a).In graph (b) appear gaussian errors
density and empirical errors histogram of load
torque error where means of error load torque
equal ��)��� and variance equal �&)(�'
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Figure 7: (a) Flux error. (b) Gaussian and histogram
of error flux
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Figure 8: (a) Speed error. (b) Gaussian and histogram
of error speed.
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Figure 9: (a) Load torque error. (b) Gaussian and his-
togram of error load torque.

The preceding results, we notice the errors mean
of observation with the high gain observer being very
near to � with the very small variance (almost surely),
then the high gain observer is the good in our case.

6 Conclusion

In this paper, high gain and alternative form for a slid-
ing mode observers are presented. they is observer
makes possible to observe, rotor flux rotor speed and
load torque. An observer with high gain and three oth-
ers with sliding mode which the functions sign, ! "#
and  $%! ". Observer whose sign gives chattering.
High gain observer is good for the observation of rotor
flux rotating speed and load torque.
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[2] A. Chouya. High Gain Observer Interconnected
with an Estimator: Application to the Induc-
tion Motor Without Mechanical Sensor. (In-
ternational Conference on Modelling, Identi-
ficatio and Control (ICMIC’2008), Shanghai
Jiao Tong University), paper ID:S2-16, 29Juin-
2Juillet 2008, Shanghai, China.

[3] M. Ghanes. Observation et commande de la
machine asynchrone sans capteur mécanique.
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